Can Goal Directed Sedation Improve Outcomes?

Yahya SHEHABI, FANZCA, FCICM, EMBA

Professor and Program Director Critical care Monash Health and Monash University - Melbourne School of Medicine, University New South Wales - Sydney

Disclosure and thank you

• CI for SPICE Program is endorsed by ANZICS CTG

- Managed by the ANZIC RC Monash University
- Funded by the Australian National Health and Medical Research Council
- Unrestricted Research Grant Hospira Inc
 - Managed by Monash University ANZIC RC
- Speaker's Honorarium from Hospira Inc, Orion Pharma, Roche Diagnostics

Australia 1 Sweden 1

Conventional Goals of Sedation

- Comfort through
 - Control at the bedside
 - Prevent awareness and recal
 - Prevent distress
 - Analgesia

- Facilitate necessary interventions
 - Invasive lines
 - Ventilation, suction
 - Other

Sedation in the ICU

- 63 yrs, 185 kg,
- presented severe SOB
- Temp 39.7, BP 90/55 (Norad)
- HR 130/min ST
- Significant cellulitis both LL and abdominal wall
- Intubated in ICU at 3 am

Continuous iv sedation is associated with prolongation of mechanical ventilation

Koleff Chest 1998

Single centre study Observational study 242 total patients

93 Continuous IV sedation64 Bolus sedation85 No IV sedation

Ventilation time Crude $185 \pm 190 \text{ h} \text{ vs } 55.6 \pm 75.6$ Adjusted 148 h [95% CI: 121, 175 h] vs 78.7 h [95% CI: 68.9, 88.6 h];p<0.001

Daily Interruption of Sedative Infusions in Critically Ill Patients Undergoing Mechanical Ventilation

NEJM Volume 342:1471-1477 May 18, 2000 Number 20

Median ventilation time 7.3 days vs. 4.9 days Median ICU length of stay 9.9 days vs. 6.4 days

DAILY INTERRUPTION OF SEDATIVE INFUSIONS IN CRITICALLY ILL PATIENTS UNDERGOING MECHANICAL VENTILATION

JOHN P. KRESS, M.D., ANNE S. POHLMAN, R.N., MICHAEL F. O'CONNOR, M.D., AND JESSE B. HALL, M.D.

⊚ 100 We can thank Kress and coworkers for a superb study that examines approaches to care for patients receiving continuous sedative infusions in the intensive care unit. Considering the gaps in our knowledge, however, this investigation may represent not so much a call for daily wake-ups of patients undergoing mechanical ventilation as a wake-up call for practitioners in the intensive care unit to examine practices of sedation more critically. We need better methods of en-

Sedation research focus

- Reduce harm associated with deep sedation:
 - Acute brain dysfunction
 - Immobility and ICU weakness
 - Cardiovascular function
 - Tracheotomy
 - Ventilator related events
 - Depressed immunity
 - Acquired infections
 - Thromboembolism

Sedation interruption and Sedation Protocols

ONLINE FIRST

Daily Sedation Interruption in Mechanically Ventilated Critically III Patients Cared for With a Sedation Protocol

A Randomized Controlled Trial

Table 1. Baseline Characteristics

	No. (%)				
Characteristics	Protocolized Sedation and Daily Interruption (n = 214)	Protocolized Sedation (n = 209)			
Mechanical ventilation, median (IQR), d	2 (1-4)	2 (1-4)			
Opioid infusions No. (%)	184 (87)	186 (89)			
Days of infusion, median (IQR)	1 (1-3)	1 (1-3)			
Benzodiazepine infusions No. (%)	169 (81)	163 (80)			
Days of infusion, median (IQR)	1 (1-3)	1 (1-3)			

SLEAP study PS+DSI vs PS Mehta et al JAMA Oct 2012

	PS+DI	PS	P value
	N=214	N=209	
Midazolam equivalents			
Dose /pt / day	102 (326)	82 (287)	0.04
Infusion, days	5.7 (6.4)	5.6 (5.9)	
Boluses/day	0.25 (1.1)	0.18 (0.81)	0.007
Fentanyl equivalents			
Dose / pt / day	1780 (4135)	1070 (2066)	<.0001
Infusion, days	6.4 (6.9)	6.6 (6.2)	
Boluses/day	2.2 (2.9)	1.8 (2.7)	<.0001

Key Trials of Sedative Agents Regulatory purposes

- 3 major RCTs with nearly 1400 patients

 Focused on drug A vs B
 - Late enrolment (up to 96 hours after ventilation)
 - Focused on ICU outcomes rather than patient centered long-term outcomes
- Sedative agents - Comparable in terms of safety and comfort

Challenging the convention . .

A protocol of no sedation for critically ill patients receiving ised trial **Un-blinded**

Additional staff

MDZ after 48 hrs

Excluded 27 patients

20% cross over

the control group (n=11, 20% vs n=4, 7%; p=0.0400).

ing mechanical ventilation is continuous sedation. Daily neral intesive care unit of Odense University Hospital, d to establish whether duration of mechanical ventilation erruption of sedation.

140 critically ill adult patients who were undergoing or more than 24 h. Patients were randomly assigned in a lation (20 mg/mL propofol for 48 h, 1 mg/mL midazolam group). Both groups were treated with bolus doses of ber of days without mechanical ventilation in a 28-day e care unit (from admission to 28 days) and in hospital This study is registered with Clinical Trials.gov, number

48 h, and, as per our study design, were excluded from n had significantly more days without ventilation (n=55; edation (n=58; mean 9.6 days, SD 10.0; mean difference ociated with a shorter stay in the intensive care unit (HR udied, in hospital (3.57, 1.52-9.09; p=0.0039), than was ences of accidental extubations, the need for CT or MRI unator-associated pitcuttoma. Agriated demium was more frequent in the intervention group than in

Published Online January 29, 2010 DOI:10.1015/50140-6736(09)62072-9

(W

See Online/Comment DOI:10.1016/50140-6736(10)60103-1

Department of Anesthesia and Intensive Care Medicine, **Odense University Hospital** (T Strem MD, Prof P Taft DMSc), and Department of **Biostatistics**. Faculty of Health Sciences (Prof T Martinussen PhD), University of Southern Denmark, Denmark

Correspondence to: Dr Thomas Strøm, Department of Anesthesia and Intensive Care Medicine, Odense University Hospital, University of Southern Denmark, 5888 Odense C. Denmark t.s@dadinet.dk

The 2013 SCCM Guidelines

Light sedation Analgesia first

Clinical Practice Guidelines for the Management of Pain, Agitation, and Delirium in Adult Patients in the Intensive Care Unit

Special Article

Juliana Barr, MD, FCCM¹; Gilles L. Fraser, PharmD, FCCM²; Kathleen Puntillo, RN, PhD, FAAN, FCCM³; E. Wesley Ely, MD, MPH, FACP, FCCM⁴; Céline Gélinas, RN, PhD⁵; Joseph F. Dasta, MSc, FCCM, FCCP⁶; Judy E. Davidson, DNP, RN⁷; John W. Devlin, PharmD, FCCM, FCCP⁸; John P. Kress, MD⁹; Aaron M. Joffe, DO¹⁰; Douglas B. Coursin, MD¹¹; Daniel L. Herr, MD, MS, FCCM¹²; Avery Tung, MD¹³; Bryce R. H. Robinson, MD, FACS¹⁴; Dorrie K. Fontaine, PhD, RN, FAAN¹⁵; Michael A. Ramsay, MD¹⁶; Richard R. Riker, MD, FCCM¹⁷; Curtis N. Sessler, MD, FCCP, FCCM¹⁸; Brenda Pun, MSN, RN, ACNP¹⁹; Yoanna Skrobik, MD, FRCP²⁰; Roman Jaeschke, MD²¹

Focus on delirium

- Emerged as ICU issue after the CAM-ICU
- Questionable relationship to:
 - Sedation depth
 - Sedative agents
- Questionable impact

 Mortality
 Cognitive dysfunction

The ABC (DE) approach

Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled tria

Timothy D Girard, John P Kress, Barry D Fuchs, Jason W W Thomaso Anne S Pohlman, Paul A Kinniry, James C Jackson, Angelo E Canonia Jesse B Hall, Robert S Dittus, Gordon R Bernard, E Wesley Ely

Four centre study 1658 patients screened, 336 enrolled MDZ and Opiates in control arm much higher ²⁰ Doesn't reflect practice outside North America.

Figure 4: Survival at 1 year

Events indicate the number of deaths in each group in the year after enrolment.

	Intervention group (n=167)	Control group (n=168)	p value
Ventilator-free days*			
Mean	14.7 (0.9)	11.6 (0.9)	0.02
Median	20·0 (0 to 26·0)	8·1 (0 to 24·3)	
Time to discharge (days)			
From intensive care	9·1 (5·1 to 17·8)	12·9 (6·0 to 24·2)	0.01
From hospital	14·9 (8·9 to 26·8)	19·2 (10·3 to NA)†	0.04
28-day mortality	47 (28%)	58 (35%)	0.21
1-year mortality	74 (44%)	97 (58%)	0.01
Duration of brain dysfunction (days)		
Coma	2 (0 to 4)	3 (1 to 7)	0.002
Delirium	2 (0 to 5)	2 (0 to 6)	0.50
RASS at first successful SBT	-1 (-3 to 0)	-2·5 (-4 to 0)	0.0001
Complications			
Any self-extubation	16 (10%)	6 (4%)	0.03
Self-extubation requiring reintubation‡	5 (3%)	3 (2%)	0.47
Reintubation‡	23 (14%)	21 (13%)	0.73
Tracheostomy	21 (13%)	34 (20%)	0.06

Data are mean (SD), n (%), or median (IQR). RASS=Richmond agitation-sedation scale. SAT=spontaneous awakening trial. SBT=spontaneous breathing trial. *Ventilator-free days from study day 1 to 28. †Greater than 25% of patients in the SBT group remained in the hospital at study day 28. ‡Reintubation within 48 hours of extubation.

Cognitive decline but why?

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Long-Term Cognitive Impairment after Critical Illness

P.P. Pandharipande, T.D. Girard, J.C. Jackson, A. Morandi, J.L. Thompson, B.T. Pun, N.E. Brummel, C.G. Hughes, E.E. Vasilevskis, A.K. Shintani, K.G. Moons, S.K. Geevarghese, A. Canonico, R.O. Hopkins, G.R. Bernard,

Characteristic	In-Hospital Cohort (N=821)	Follow-up Cohort (N=467)
Median (IQR) Days in Coma	3 [2-6]	3 [1-5]
No. of days		
Median	3	3
Interquartile range	2–6	1–5

Mobility after critical illness the new obsession

- NEJM case study
- 77 old following colon surgery
- 10 days on, still in
- Poll, 94%

- Minimize sedation
- Institute early active and passive mobilization
- Even while he is still undergoing mechanical ventilation

ORIGINAL ARTICLE

Early Physical Medicine and Rehabilitation for Patients With Acute Respiratory Failure: A Quality Improvement Project

Dale M. Needham, MD, PhD, Radha Korupolu, MBBS, MS, Jennifer M. Zanni, PT, MSPT, Pranoti Pradhan, MBBS, MPH, Elizabeth Colantuoni, PhD, Jeffrey B. Palmer, MD, Roy G. Brower, MD, Eddy Fan, MD

Table 2: Sedation, Delirium, and Medication Outcomes							
Outcome Measure	Pre-QI Period (n=27 Patients with 312 MICU Patient Days)	QI Period (n=30 Patients With 482 MICU Patient Days)	Р *				
Benzodiazepines							
Patients ever receiving benzodiazepines	26 (96)	22 (73)	.030				
MICO days with any benzodiazepine use ⁺	150 (50)	118 (26)	.002				
Daily midazolam-equivalent dose, units (median [IQR] units)	47 (21–114)	15 (3–59)	.090				
Narcotics							
Patients ever receiving narcotics	26 (96)	23 (77)	.050				
MICU days with any narcotic use [†]	188 (62)	299 (66)	.650				
Daily morphine-equivalent dose (median [IQR] units)	71 (30–180)	24 (3–120)	.010				
Pain							
Daily scores (range, 0–10) (mean ± SD) [‡]	0.6+1.9	0.6±1.7	.790				
Sedation status (daily RASS ²³) of MICU days [§]							
Deeply sedated (RASS -4 to -5)	129 (43)	86 (18)	<.001				
Moderately sedated (RASS -2 to -3)	72 (24)	65 (14)					
Alert (RASS -1 to +1)	88 (30)	311 (67)					
Agitated (RASS +2 to +4)	8 (3)	6 (1)					
Delirium status (daily CAM-ICU ²⁷) of MICU days [∥]							
Delirious	107 (36)	125 (28)	.003				
Not delirious	61 (21)	243 (53)					
Unable to assess because of deep sedation	129 (43)	86 (19)					

Increased Hospital-Based Physical Rehabilitation and Information Provision After Intensive Care Unit Discharge The RECOVER Randomized Clinical Trial

Timothy S. Walsh, MD; Lisa G. Salisbury, PhD; Judith L. Merriweather, PhD; Julia A. Boyd, PhD; David M. Griffith, MD; Guro Huby, PhD; Susanne Kean, PhD; Simon J. Mackenzie, MBChB; Ashma Krishan, MSc; Stephanie C. Lewis, PhD; Gordon D. Murray, PhD; John F. Forbes, PhD; Joel Smith, PhD; Janice E. Rattray, PhD; Alastair M. Hull, MD; Pamela Ramsay, PhD; for the RECOVER Investigators

Outcome (No. of Patients With Evaluable Data in Usual	Treatment Group		Difference Scores Mean		
Care/Intervention Groups)	Usual Care	Intervention	(95% CI)	P Value	
RMI at 3 mo (110/118)ª	13 (10 to 14)	13 (10 to 14)	-0.2 (-1.3 to 0.9) ^b	.71	
Hospital Discharge Outcome					
Post-ICU hospital length of stay, d (119/119) ^c	10 (6 to 23)	11 (6 to 22)	0 (-2 to 2) ^b	.90	
RMI (84/83) ^d	8 (5 to 10)	8 (6 to 11)	-0.7 (-1.7 to 0.4) ^b	.20	
Handgrip strength, kg (82/82) ^e	15.0 (9.7 to 22.6)	14.7 (10.0 to 22.0)	1.1 (-1.3 to 3.6) ^b	.36	
VAS symptom score, median (IQR) (83/80) ^f					
Breathlessness	2.8 (1.1 to 5.3)	2.5 (1.0 to 5.0)	0.2 (-0.5 to 1.0)	.49	
Fatigue	5.0 (3.2 to 6.7)	5.1 (2.7 to 7.2)	0.0 (-0.9 to 0.9)	.96	
Appetite	4.1 (1.7 to 6.7)	5.0 (1.9 to 7.6)	-0.4 (-1.6 to 0.4)	.33	
Pain	2.6 (0.7 to 5.2)	2.3 (0.8 to 4.7)	0.0 (-0.6 to 0.8)	.89	
Joint stiffness	3.6 (1.1 to 6.2)	3.3 (1.1 to 4.9)	0.5 (-0.3 to 1.5)	.21	

- No difference at 3, 6 and 2 months
- Better patient satisfaction with care provided

The 2013 SCCM Guidelines

Implementation of the Pain, Agitation, and Delirium Clinical Practice Guidelines and Promoting Patient Mobility to Prevent Post-Intensive Care Syndrome

Judy E. Davidson, DNP, RN, FCCM¹; Maurene A. Harvey, RN, MPH, MCCM²; Anita Bemis-Dougherty, PT, DPT, MAS³; James M. Smith, PT, DPT⁴; Ramona O. Hopkins, PhD^{5,6}

Proposed 2 new recommendations:

Light sedation to allow patient activities
 Promote early mobility to prevent physical deterioration and reduce delirium

Brenda Pun, MSN, RN, ACNP¹⁹; Yoanna Skrobik, MD, FRCP²⁰; Roman Jaeschke, MD²¹

Can sedation strategies improve important outcomes?

Preventable

Death

Sedation in ARDS

ORIGINAL ARTICLE

High-Frequency Oscillation in Early Acute Respiratory Distress Syndrome

Niall D. Ferguson, M.D., Deborah J. Cook, M.D., Gordon H. Guyatt, M.D., Sangeeta Mehta, M.D., Lori Hand, R.R.T., Peggy Austin, C.C.R.A., Qi Zhou, Ph.D., Andrea Matte, R.R.T., Stephen D. Walter, Ph.D.,
Francois Lamontagne, M.D., John T. Granton, M.D., Yaseen M. Arabi, M.D.,
Alejandro C. Arroliga, M.D., Thomas E. Stewart, M.D., Arthur S. Slutsky, M.D., and Maureen O. Meade, M.D., for the OSCILLATE Trial Investigators and the Canadian Critical Care Trials Group*

Outcome	HFOV Group (N = 275)	Control Group (N = 273)	Relative Risk (95% Cl)	P Value
Death in hospital — no. (%)	129 (47)	96 (35)	1.33 (1.09–1.64)	0.005
Death in intensive care unit — no. (%)	123 (45)	84 (31)	1.45 (1.17–1.81)	0.001
Death before day 28 — no. (%)	111 (40)	78 (29)	1.41 (1.12–1.79)	0.004
New barotrauma — no./total no. (%)*	46/256 (18)	34/259 (13)	1.37 (0.91–2.06)	0.13
New tracheostomy — no./total no. (%) †	59/273 (22)	66/267 (25)	0.87 (0.64–1.19)	0.39
Refractory hypoxemia — no. (%)	19 (7)	38 (14)	0.50 (0.29–0.84)	0.007

Sedation may	The NEW ENGLAND JOURNAL of MEDICINE					
be bermful in	ORIGINAL ARTICLE					
ARDS	High	-Frequency Osci Respiratory Dis	llati tres	on in Early A s Syndrome	Acute	
Co-interventions		HFO		Control	Ρ	
Vasoactive agents		91%		84%	0.01	
Neuromuscular blockers		83%		68%	0.001	
Duration of vasoactive agen	ts	s 2 days longer				
Duration of NM Blockers		1 day	long	ger		
Midazolam and fentanyl duration days Med (IQR)		10(6-18		10(6-17)	0.99	
Midazolam mg Med (IQR) 7	days	199(100-382)	14	1(68-240)	0.001	
Fentanyl ugm Med (IQR) 7 d	ays	2980 (1258-4800	(1	2400 140-4430)	0.06	

Different focus is needed

- Past sedation trials:
 - New concepts and novel ideas
 - Positive change in practice
 - Significant limitations
 - External validity
- Significant Knowledge and evidence gap still exists today

MORE RESEARCH

Sedation Strategies in Critical Illness

What Determine Sedation Strategies?

- The intensity of sedation depth
- The choice of sedative agents
- Timing of intervention
- Concomitant factors

 Underlying critical illness
 Pre-morbid state

Goal Directed Sedation Strategy

Conventional

- Progression from anaesthesia
 - Hypnosis / amnesia
- Deep sedation
 - comfort
- Conventional agents
 - Benzo, propofol
- Short-term focus
 - Ventilation
 - Efficacy

Goal directed

- RCTs in critically ill patients
 - Targeted sedation
- Light sedation
 - comfort
- Novel agents
 - Alpha ₂ Agonists
- Long-term effects
 - Institutional dependency
 - Cognitive function

Goal Directed Sedation

"The future depends on what we do today."

Deep Sedation in Critical Illness

Intensive Care Med DOI 10.1007/s00134-013-2830-2

ORIGINAL

Yahya Shehabi Lucy Chan Suhaini Kadiman Anita Alias Wan Nasrudin Ismail Mohd Ali T. Ismail Tan study **Tien Meng Khoo** Saedah Binti Ali Mat Ariffin Saman Ahmad Shaltut **Cheng Cheng Tan** Cow Yen Yong Michael Bailey The Sedation Practice in Intensive Care Evaluation (SPICE) Study Group investigators

Sedation depth and long-term mortality in mechanically ventilated critically ill adults:

a prospective longitudi study

Early Intensive Care Sedation Predicts Long-Term Mortality in Ventilated Critically III Patients

Yahya Shehabi^{1,2}, Rinaldo Bellomo^{3,4,5,6}, Michael C. Reade^{7,8}, Michael Bailey⁵, Frances Bass², Belinda Howe⁵, Colin McArthur⁹, Ian M. Seppelt¹⁰, Steve Webb^{11,12}, and Leonie Weisbrodt¹³; Sedation Practice in Intensive Care Evaluation (SPICE) Study Investigators and the ANZICS Clinical Trials Group*

¹Clinical School of Medicine, University of New South Wales, Randwick, Australia; ²Intensive Care Research, Prince of Wales Hospital, Randwick, Australia; ³Faculty of Medicine, University of Melbourne, Melbourne, Australia; ⁴Faculty of Medicine, Monash University, Melbourne, Australia; ⁵Australian New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia; ⁶Intensive Care Research, Austin Hospital, Heidelberg, Australia; ⁷Burns, Trauma & Critical Care Research Centre, University of Queensland, Brisbane, Queensland, Australia; ⁸Australian Defence Force, Brisbane, Queensland, Australia; ⁹Department of Critical Care Medicine, Auckland City Hospital, Auckland, New Zealand; ¹⁰Department of Intensive Care Medicine, Nepean, University of Sydney, Sydney Medical School Nepean, Kingswood, Australia; ¹¹Intensive Care Unit, Royal Perth Hospital, Perth, Australia; ¹²School of Medicine and Pharmacology and School of Population Health, University of Western Australia, Perth, Australia; ¹³Sydney Nursing School, University of Sydney, Nepean Hospital, Kingswood, Australia

712 patients8500 ICU days4 countries43 ICUs

Rationale: Choice and intensity of early (first 48 h) sedation may affect short- and long-term outcome.

Objectives: To investigate the relationships between early sedation and time to extubation, delirium, and hospital and 180-day mortality among ventilated critically ill patients in the intensive careunit (ICU). Methods: Multicenter (25 Australia and New Zealand hospitals) prospective longitudinal (ICU admission to 28 d) cohort study of medical/surgical patients ventilated and sedated 24 hours or more. We assessed administration of sedative agents, ventilation time, sedation depth using Richmond Agitation Sedation Scale (RASS, four hourly), delirium (daily), and hospital and 180-day mortality. We used multivariable Cox regression to quantify relationships between early deep sedation (RASS, -3 to -5) and patients' outcomes. Measurements and Main Results: We studied 251 patients (mean age, 61.7 \pm 15.9 yr; mean Acute Physiology and Chronic Health Evaluaton [APACHE] II score, 20.8 \pm 7.8), with 21.1% (53) hospital and

25.8% (64) 180-day mortality. Over 2,678 study days, we completed 14,736 RASS assessments. Deep sedation occurred in 191 (76.1%) patients within 4 hours of commencing ventilation and in 171 (68%) patients at 48 hours. Delirium occurred in 111 (50.7%) patients with median (interquartile range) duration of 2 (1–4) days. After

AT A GLANCE COMMENTARY

Scientific Knowledge on the Subject

This is the first prospective multicentre longitudinal study of the practice of sedation in critically ill patients who were mechanically ventilated for longer than 24 hours. In addition, this manuscript contains novel data, which have primacy in identifying the quantitative relationship between early sedation depth (48 h after initiation of mechanical ventilation) and three important clinical outcomes: time to extubation, time to delirium, and hospital and 180-day mortality.

What This Study Adds to the Field

In 251 critically ill patients at multiple centers, we identified deep sedation within 4 hours of commencing ventilation as an independent negative predictor of the time to extubation, hospital death, and 180-day mortality. The early phase of ICU sedation is usually unaccounted for in randomized controlled trials due to late randomization.

Deep Sedation 72 hours after ventilation

EARLY Deep sedation may be harmful Independently predicts time to extubation

Shehabi et al, AJRCCM Oct 2012

Shehabi et al, Int Care Med Jan. 2013

EARLY Deep sedation may be harmful Independent predictor of 6 month mortality

Shehabi et al, Int Care Med Jan. 2013

Shehabi et al, AJRCCM Oct 2012

Early deep sedation and 2 years survival Balzer et al Crit Care 2015

- 1884 patients, matched pair analysis
- 6 years period
- Excluded neurological patients and patients who would have needed deep sedation
- Early deep sedation in 513 patients
- RASS at least every 8 hours
- Followed to 2 years for survival

Time to extubation and mortality

A new framework sedation in critical illness

A new framework sedation in critical illness

Is Early Deep Sedation Modifiable?

EGDS – ANZ Pilot RCT Crit Care Med Aug 2013

Early Goal-Directed Sedation Versus Standard Sedation in Mechanically Ventilated Critically III Patients: A Pilot Study*

Yahya Shehabi, FCICM, FANZCA, EMBA^{1,2,3}; Rinaldo Bellomo, MD, FCICM, FRACP^{2,3}; Michael C. Reade, MBBS, MPH, DPhil, FCICM⁴; Michael Bailey, PhD³; Frances Bass, RN, BN, GDipICU⁵; Belinda Howe, RN, BN³; Colin McArthur, FANZCA, FCICM^{3,6}; Lynne Murray, FAIMS³; Ian M. Seppelt, MBBS, FANZCA, FCICM⁷; Steve Webb, MPH, PhD, FCICM^{3,8}; Leonie Weisbrodt, RN, BN, MN(Hons)⁹; for the Sedation Practice in Intensive Care Evaluation (SPICE) Study Investigators and the Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group

Early Goal Directed Sedation A Process of Care

• EGDS is a combination strategy:

- Early commencement of sedative intervention
- Effective analgesia
- Utilizing dexmedetomidine as a primary sedative agent
 - Rousable sedation and reduced overall sedation depth
 - Facilitate wakefulness and ventilation weaning
 - Reduce overall sedative and opioid load
- Targeted light sedation RASS -2 to +1.
- Avoiding and minimizing benzodiazepines

Time spent in light sedation first 48 hours

Patients achieving light sedation during the first 7 study days

EGDS Pilots Main outcomes

	EGDS Combined ANZ + Malaysia			EGD Mai	S Malaysi n OUTCOME	an s
Clinical outcome	EGDS N=52	STDS N=45	P value	EGDS N=31	STDS N=29	P value
Time to randomization hrs. Median [IQR]	2.1 (0.21-5.5)	1.1 (0.5-4.65)	0.56	2.17 (0.17-6)]	1.5 (0.5-5.33)	0.72
RASS2 to +1 first 48 h % Light sedation range	71% 517/732	51% 312/606	<0.0001	74% 314/425	58% 238/409	<0.0001
RASS -3 to -5 first 48 h % Deep sedation range	26% 187/732	46% 278/606	<0.0001	22% 94/425	41% 166/409	<0.0001
% ICU days with –ve Delirium	55%	40%	0.0005	52%	37%	0.002
Physical restraints % (n)	15% (8)	42% (19)	0.003	7 (23%)	14 (48%)	0.037
Ventilation time Med (IQR) hrs	61.8 (43.5 -100.5)	65.0 (44-125.1)	0.47	53.17 (41.5-90.2)	71.8 (46.3-137)	0.13
ICU Length of Stay Med (IQR) D	4.3 (2.76-8.63)	5.04 (3.5-9.35)	0.37	3.55 (2.25-6.14)	4.84 (3.8-9.35)	0.07
Hospital Length of Stay Med (IQR) Days	11.7 (7.3-28.85)	14.57 (8.5-26.8)	0.62	11.16 (6.9-15.89)	14.04 (8.94-24.8)	0.18
Hospital mortality N (%)	7 (13%)	5 (11%)	0.73	4 (13%)	4 (14%)	1.0

Sedative and Analgesic Agents

Drugs given Median {IQR] per patient	EGDS N=52	STDS N=45	%. Rx EGDS vs. STDS	P value
Dexmedetomidine ug	1559 #	799	98% vs	<0.0001
	(490-3660)	(260-1338)	4%	0.34 [#]
Time on Dexmed D	3 (2-5)	0[0-0]		<0.0001
Midazolam mg	4.5 [#]	56	19% vs	0.036
	(2-9)	(36.5-123)	80%	<0.0001 [#]
Time on Midazolam D	0 [0-0]	2 (2-3)		<0.0001
Propofol mg	535 [#]	2150	42% vs	0.65
	(150-1200)	(880-4630)	47%	0.06 #
Time on Propofol D	1.23 (2.15)	1.42 (2.03)		0.65
Morphine mg	131.5 [#]	110	27% vs	0.014
	(24-279)	(21-199)	51%	0.40 [#]
Fentanyl ug	420 [#]	1340	58% vs	0.65
	(140-1000)	(512.5-1950)	62%	0.019 #

Early Goal Directed Sedation

- Novel way to achieve GDS Early
- In pilot trials:
 - Delivered within 2 hours of ventilation
 - Effective, safe and practical at the bedside
 - Reversed early deep sedation
 - Reduced use of opioids, Benzos and propofol
 - Reduced the use of physical restraints
 - Increased delirium free days

Early Goal Directed Sedation

Can Early Goal Directed Sedation

improves Outcome?

Critical illness trajectory is determined early

- Early deep sedation is
 - unjustified
 - lead to long-term harm
- Delayed physical and occupational interventions little impact
- Family centered care should commence early
- Plausible that EGDS can impact drivers of long-term outcomes positively
 - Deliver a holistic approach to ICU sedation

I was given EGDS and

Sedation Practice in Intensive Care Evaluation

- SPICE I:

- Identify current standard care
- Identify drivers of poor patients outcomes
- Identify modifiable elements associated with poor outcomes
- SPICE II:
 - Identify aspects of "sedation practice" that may improve outcome
 - Test the feasibility of possible intervention/s in a pilot multi-centre study in ANZ intensive care units

-SPICE III

- Identify components of "sedation strategy" that is likely to improve longterm outcomes
- Scientifically test this "combination" against current practice

Early Goal Directed Sedation vs. Standard Care Sedation

Sedation Practices in Intensive Care Evaluation:

SPICE III: A Prospective Multicentre Randomised Controlled Trial of

Early Goal Directed Sedation Compared with Standard Care in Mechanically Ventilated Patients in Intensive Care

Early Goal-Directed Sedation (EGDS), compared to standard sedation practice,

reduces 90-day all-cause mortality in critically ill patients who require mechanical ventilation

Study Aim

- To investigate the clinical effectiveness of an Early Goal Directed Sedation Strategy on
 - 90 day All-Cause mortality
 - Cognitive function at 180 days
 - Institutional dependency at 180 days

SPICE III is a global agenda

Early Goal Directed Sedation within a holistic appraoch

Summation

- Sedation practice is evolving rapidly
 - Light sedation and analgesia first paradigm
 - Benzo minimization
- Goals of sedation are changing
- Goal Directed (defined) Sedation
 - Sedation intensity and choice of sedative agents
 - Multimodal pain Mx and
 - Define goals early, adjusted frequently

Can Early Goal Directed Sedation Improves Outcome? YES

"We are here to put our dent in the universe. Otherwise why else even be here?"

