The answer is blowing in the wind; cardiac output and lung volume monitoring in intubated patients

Caroline Hällsjö Sander MD
Department of Anaesthesia, Surgical Services and Intensive Care Medicine, Karolinska University Hospital Solna
This work has been supported by;

The regional agreement on medical training and research (ALF) between Stockholm County Council and the Karolinska Institutet

The HMT project (Health, Medicine and Technology) a collaboration project between the Stockholm County Council and the Royal Institute of Technology

Maquet Critical Care AB
Clinical review: What are the best hemodynamic targets for noncardiac surgical patients?

Suzana Margareth Lobo* and Neymar Elias de Oliveira

Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane Systematic Review

M. P. W. Grocott1, A. Dushianthan1*, M. A. Hamilton2, M. G. Mythen3, D. Harrison4, K. Rowan4 and Optimisation Systematic Review Steering Group5

Clinical review: Goal-directed therapy - what is the evidence in surgical patients? The effect on different risk groups

Maurizio Cecconi*, Carlos Corredor, Nishkantha Arulkumaran, Gihan Abuela, Jonathan Ball, RJ Michael Grounds, Mark Hamilton and Andrew Rhodes
Perioperative monitoring during high-risk surgery?

Poor Adoption of Hemodynamic Optimization During Major Surgery: Are We Practicing Substandard Care?

Timothy E. Miller, MB ChB, FRCA, Anthony M. Roche, MB ChB, FRCA, MMed (Anaes), and Tong J. Gan, MD, MHS, FRCA

DOI 10.1007/s10876-014-9646-7

A web-based Italian survey of current trends, habits and beliefs in hemodynamic monitoring and management

Gianni Biancofiore · Maurizio Cecconi · Giorgio Della Rocca

Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists

Maxime Cannesson1, Gunther Pestel2, Cameron Ricks1, Andreas Hoesf3 and Aziel Perel4
A modified Fick's principle

\[CO = \frac{VCO_2}{CvCO_2 - CaCO_2} \]

Partial rebreathing

A capnodynamic method

The capnodynamic equation

\[
\text{ELV} \cdot \left(F_{A}CO_{2}^{n} - F_{A}CO_{2}^{n-1} \right) = \text{EPBF} \cdot \Delta t^{n} \cdot \left(C_{v}CO_{2} - C_{c}CO_{2}^{n} \right) - \text{VTCO}_{2}^{n}
\]

ELV

Effective lung volume [L]

EPBF

Effective pulmonary blood flow [L/min]

n

current breath

n-1

previous breath

\(F_{A}CO_{2} \)

mean alveolar carbon dioxide fraction

\(C_{v}CO_{2} \)

mixed venous carbon dioxide content \([L_{\text{gas}}/L_{\text{blood}}]\)

\(C_{c}CO_{2}^{n} \)

end-pulmonary capillary carbon dioxide content \([L_{\text{gas}}/L_{\text{blood}}]\)

\(\text{VTCO}_{2}^{n} \)

volume [L] of carbon dioxide eliminated by the current breath

\(\Delta t^{n} \)

current breath cycle time [min]
Ventilatory pattern

Inspiratory holds

Expiratory holds

Pressure (cm H₂O)

Time

Pressure (cm H₂O)

Time
List of errata
Reference method for cardiac output (CO_{TS})

An ultrasonic flow probe placed around truncus pulmonalis
Hämodynamic challenges in a porcine model (N=6-10)

Hällsjö Sander C, Hallbäck M, Wallin M, Emtell P, Oldner A, Björne H
Novel continuous capnodynamic method for cardiac output assessment during mechanical ventilation.
Hemodynamic and ventilatory challenges before and after lung lavage in a porcine model (N=9)

Hällsjö Sander C, Hallbäck M, Suarez Sipmann F, Wallin M, Oldner A, Björne H
The capnodynamic method CO_{EPBF} with a modified ventilatory pattern compared to the reference method for cardiac output CO_{TS} in a porcine model ($N=8$).
141 paired cardiac output values obtained from the reference method for CO (CO_{TS}) and the capnodynamic method (CO_{EPBF}) (L/min)
Conclusion

The capnodynamic method (CO_{EPBF}) with a ventilatory pattern based on expiratory holds did not display the paradoxical trending shown in our previous animal studies with a ventilatory pattern based on inspiratory holds.

Trending ability was preserved during all hemodynamic and respiratory interventions.
The capnodynamic equation

\[ELV \cdot \left(F_A CO_2^n - F_A CO_2^{n-1} \right) = EPBF \cdot \Delta t^n \cdot \left(C_v CO_2 - C_c CO_2^n \right) - VT CO_2^n \]

ELV Effective lung volume [L]

EPBF Effective pulmonary blood flow [L/min]

n current breath

n-1 previous breath

F_A CO_2 mean alveolar carbon dioxide fraction

C_v CO_2 mixed venous carbon dioxide content [L_{gas}/L_{blood}]

C_c CO_2^n end-pulmonary capillary carbon dioxide content [L_{gas}/L_{blood}]

VT CO_2^n volume [L] of carbon dioxide eliminated by the current breath

\Delta t^n current breath cycle time [min]
ELV effective lung volume

The stability of ELV during significant hemodynamic alterations.

The correlation of ELV and a reference method for FRC (FRC_{PEEP}) at different PEEP levels.
The sulfur hexa fluoride method reference for FRC (FRC$_{PEEP}$)
Hemodynamic alterations in a porcine model (N=9)

ELV

CO_Ts
ELV compared the FRC\textsubscript{PEEP} during PEEP alterations (N=9)
Conclusions

ELV remained stable during hemodynamic alterations and was closely related to FRC_{PEEP}.
Clinical and future perspectives

Evaluation of the modified ventilatory pattern after lung lavage

Correction for shunt flow

Human study; 30 patients high risk surgery CO_{EPBF}

Could ELV and EPBF be used in combination for optimisation of CO and PEEP?
Thank you for your attention!

caroline.hallsjo-sander@karolinska.se
Materials and Methods

A 10 Fr Reliant catheter was placed below the diaphragm and inflated. Hemodynamic measurements were obtained:
- Before inflation of the balloon
- 27 minutes after inflation
- 1, 3 and 5 minutes after deflation

Reference method for cardiac output; The ultrasonic flow probe placed around truncus pulmonalis CO_{TS}
The capnodynamic method CO_{EPBF}
The pulmonary artery catheter CO_{PAC}
Pigs (N=8)
Conclusion

The ischemic model resulted in significant changes in lactate levels and severe hemodynamic changes.

CO_{EPBF} showed good agreement at BL but markedly overestimated CO at minute one and three after deflation. Five minutes after deflation CO_{EPBF} had re-established agreement with the reference method.